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Abstract –Fault diagnosis has a significant role in enhancing the safety, reliability, and availability of complex systems. However, the problem of enormous condition monitoring data and multiple failure modes makes the diagnostics great challenge. The imbalance between normal and fault monitoring data will increase the false alarm rate and the false negative rate. On the other hand, discrete monitoring data such as events are frequent and critical to fault diagnosis of complex systems. In this work, we propose a fusion fault diagnostic method which combines Naïve Bayes with AdaBoost ensemble algorithm. This integrated method is appropriate for discrete data and improves the adaptability for imbalanced condition monitoring data. Experimental results based on PHM 2013 dataset show that fault diagnosis performance using the fusion method can be ameliorated.
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I. INTRODUCTION

As the system complexity increases rapidly in aerospace engineering, the requirements of reliability and safety become much higher. However, for most space crafts, because of the high complexity of space environment and the limitation of measurements, abnormal operating conditions even the system failures appear. Therefore the remote condition monitoring data become the main basis for fault diagnosis [1-2]. Thus, data-driven fault diagnosis has gradually become the focus for improving the reliability, safety and availability for the aerospace applications [3-4].
Fault diagnosis based on data-driven methods has been extensively studied, which applies historical monitoring data to learn a model of system behavior [5]. Such approaches do not rely on the detailed mathematical model of complex systems. And in hybrid complex systems, of which behavior includes both continuous and discrete monitoring data, achieving accurate diagnosis becomes more difficult. Discrete monitoring data containing a large amount of systematic information are practical and adaptable for fault diagnosis, applied solely [6]. Hence, the fault diagnosis of discrete monitoring data based on fusion algorithm is concerned in this paper.

Data-driven diagnostic approaches are mostly based on machine learning algorithm. Lots of contributions have been made in this area. The algorithms, such as Support Vector Machine [7], Naïve Bayes [8], Decision Tree [9] and Neural Network [10], are applied for fault diagnosis. To improve the diagnostic accuracy, boosting algorithms like AdaBoost [11-12], are used to stabilize the single algorithm. Due to discrete feature and imbalance between normal and fault conditions, in this work, the fusion method combining Naïve Bayes and AdaBoost ensemble algorithm is proposed.

This paper is organized as follows. In section II, preliminary work including the Naïve Bayes and AdaBoost ensemble algorithm will be introduced briefly. In section III, the fault diagnosis based on proposed fusion method is discussed in detail. In Section IV, experimental results are provided to validate the performance of the proposed approach. Finally, the conclusion and the future work will be presented.
II. METHODOLOGY
A. Naïve Bayes algorithm
As a type of machine learning algorithm, Naïve Bayes classifiers [13] is a simple probabilistic classifier based on Bayes' theorem. The main task is to approximate an unknown target function
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where 
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 denotes the mth type as Y, and 
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 is the attribute vector for kth sample. Training data are analyzed to estimate 
[image: image9.wmf](

)

PXY

 and 
[image: image10.wmf](

)

PY

. The posterior probability for new instance 
[image: image11.wmf](

)

k

PYXx

=

 is determined with Bayes rules as accordingly.
Naive Bayes algorithm proposes conditionally independent assumption for attributes, which simplifies the representation of 
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[image: image14.wmf](

)

(

)

1

1

n

ni

i

PXXYPXY

=

=

Õ

L

                        (2)

With Y as a discrete-valued variable and attributes 
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 as discrete or real-valued variable, a classifier can be constructed to estimate the probability distribution of possible value of Y, for new testing sample X. According to Bayes theorem, the expression for the probability of Y, which is supposed to be kth possible value, is
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where all possible j for Y are considered to calculate the denominator of (3). Due to conditionally independent assumption, we can rewrite (3) as
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which is regarded as the most significant equation for Naive Bayes classifier. If a new instance 
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 updates, the probability which Y will take on any possible value can be calculated according to (4) with the estimation of 
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. Generally, the most likely value of Y is regarded as the final result, so the rule of classifier is
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In practice, the corresponding frequency of different samples in the training data is applied to estimate the prior probability with maximum likelihood. 
B. AdaBoost ensemble algorithm

“Boosting” is an ensemble learning algorithm which improves the performance of classification algorithm by combining several classifiers to create a single predictive model [14]. Adaptive Boosting, abbreviated as AdaBoost, does not require any prior knowledge about the performance of the weak learning algorithm [15]. 
Assuming 
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 is the training set with m samples and 
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. In this paper, we consider labels Y as finite number k. In AdaBoost algorithm, a “weak” learning algorithm is necessary, which is denoted as weak classifier. AdaBoost algorithm constructs weak classifiers tautologically in several rounds. On round t, the distribution 
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 of training data is generated by results of tth weak classifiers. And then, a new weak classifier is built and get back a hypothesis 
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 of training set, where 
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 is the weight decided by the results of previous weak classifier. Repeat such procedure for T times, and finally combine all weak classifiers with respect to different weights, so we can create a new classification model as the finial hypothesis 
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In initialization, the distribution is uniform over the training set and the updated distribution 
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 is computed from both distribution 
[image: image32.wmf]t

D

 and the results of former weak classifier. If the former weak classifier has classified the sample correctly, its weight is shrunken by a number 
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 is the function of weighted error rate 
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. Therefore samples which are classified accurately by most previous weak classifiers hold lower weights than those tending to be misclassified. AdaBoost algorithm focuses more on “hard” samples, which cannot be classified correct by former weak classifiers.

At last, the final hypothesis 
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 is the combination of weak classifiers with a weighted vote. The weight of each weak classifier is defined as 
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, thus, higher weight is given to the weak classifier with better performance. When a new instance x is given, the final classifier outputs a label whose sum of weak classifier’s results is the maximum. 

The detailed procedure of AdaBoost is as follows.
Input: m training samples
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Integer T specifies number of iterations;
The distribution of training set 
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Do for 
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· Call weak classifier, providing it with distribution 
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Calculate weighted error rate: 
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· Update distribution 
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· Normalize the update distribution 
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Output hypothesis 
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III. PROPOSED FUSION FRAMEWORK FOR FAULT DIAGNOSIS
To ameliorate the fault diagnosis using basic Naïve Bayes classifier for imbalance data between normal and fault conditions, we combine the AdaBoost ensemble algorithm to obtain a fusion framework. The detailed process is shown in Fig.1.
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Fig. 1 Proposed framework of fault diagnosis based on fusion method
Step 1: Initialize data
To learn the distribution, a condition characteristic matrix is constructed to show the relationship between each type of faults and the frequency of all events, which is shown as (6) for modeling the fault diagnostic situation.
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where 
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 denotes the ith type of events, 
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 demonstrates the jth condition with the sum as K, and 
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 shows the occurrence number of ith event in jth condition.
By this time, the entire training samples are allocated the same weights as 
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 to train the weak classifier.

Step 2: Train weak classifier 

Step 2-1: Preprocess the weighted training set

To illuminate the connection between problem conditions, which are usually described as faults, a fault characteristic matrix is necessary as
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where 
[image: image58.wmf]{

}

12

,,

M

PPPP

=

L

 is defined as the set of all possible faults and 
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 is the label used for non-fault condition. 
Combine the condition and fault characteristic matrixes together as the final matrix in (8), which is applied to build the weak classifier.
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The element nij represents the occurrence number of certain event, which is classified as type i, when the fault Pj is met in the system.
Step 2-2: Calculate the posterior probability for each event.

Applying the information offered by the final matrix in step 2-1, we estimate the conditional probabilities 
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 of observing a condition that includes the event E.
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The occurrence number in the final matrix is substituted with the posterior probability. To avoid zero appears in the matrix which may influence the computational procedure, we use a little number tending to zero instead. 
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where
[image: image64.wmf]ij
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 is the probability for ith event appearing in jth problem.
Step 2-3: Calculate the posterior probability for each condition
Due to the conditional independence in Naïve Bayes algorithm, different events deriving from the same condition are independent with each other. So the posterior probability for one condition C, with m kinds of events, leading certain problem can be calculated as
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where 
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 from probabilistic matrix in step 2-2. 

Step 2-4: Fault diagnosis

According to the Bayes rule, the posterior probability of certain condition for each fault can be determined as 
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Moreover, in this case we regard the probability of each condition as the same, therefore, only the posterior probability for certain condition 
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 are involved in this situation without considering the influence of denominator in (12). Generally, we recommend the fault condition with the largest product of the two factors as the real problem.
Step 3: Update the distribution

To evaluate the performance of the weak classifier, we compare the predicted results from our classifier with the true fault condition and calculate the weighted error rate e.
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The weighted error rate adds up all weights which come from the conditions classified improperly. According to AdaBoost algorithm, number 
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 is needed to adjust the distribution of training dataset.
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And the updated weight is
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where 
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 indicates the updated weight for ith condition, that is, the weights of conditions classified inaccurately remain unchanged, while others decrease. In this case, the classifier would pay more attention to the conditions that cannot be classified correctly. Then we normalize the distribution of the training dataset, which means the sum of all weights become 1. So far the distribution of training dataset has already been updated based on the performance of the weak classifier.
And then, renovate the training dataset, where 
[image: image76.wmf]ji

e

 for each condition is multiplied with its updated weight as
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where 
[image: image78.wmf]ji
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 represents the occurrence number for jth event in ith condition. Adjust the whole training dataset in same way to obtain a new weighted training dataset for the construction of a new weak classifier.

Step 4: Repeat several weak classifiers

Repeat the Step 2 to Step 3, we can build several weak classifiers until the weighted accuracy is larger than 0.5, which implies the new classifier cannot improve the performance compared with the former weak classifier and cannot bring positive effect to the final classifier.

Step 5: Integrate the results of different weak classifiers 

Assemble all weak classifiers together to produce the final results. The proportion of each classifier is determined by its performance. 
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where 
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 is the predicted fault type for each condition and 
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 is the weight of tth weak classifier.

When a new sample is provided, it should be classified by all weak classifiers and those results will be integrated to determine the final result with (17).

IV. EXPERIMENTAL RESULTS AND ANALYSIS
C. PHM Data challenge dataset

The PHM data challenge dataset is presented at the 2013 PHM annual conference by NASA and PHM Society [16][17]. This dataset offers state monitoring data of a complex system, which includes a known set of faults appearing in historical data. The challenge is designed that a large number of unlabeled samples are provided. Whether these unlabeled samples are faults, described as problems in this dataset, or are normal states should be determined with the training of known samples from historical monitoring data. Also the specific type of such problem needs to be distinguished.

In PHM 2013 data challenge dataset, each candidate problem is represented as a case, which comprises a collection of event codes with observations of 30 parameters. Event codes were reported automatically from the monitoring system. When a particular condition happens, a corresponding event code will be generated. Under this circumstance, the engineers or the control system can mark such cases, which can also correspond to a single event. At the same time, once an event occurs, the monitoring system will take a snapshot for all 30 monitoring parameters.
In the experiments, we divide the dataset as training and testing set for evaluation. The dataset consists of cases determined as nuisances or problems in historical data, and the exact labels of such problems are provided. In this dataset, there are 10459 cases, of which 10295 cases are determined as nuisances and 164 as problems which are characterized as 13 different problem types. For all cases, 1,316,653 events codes are recorded with measurements of continuous parameters. Therefore, the task of the dataset is to discard nuisance cases and distinguish the correct problem types for objective cases.
D. Evaluation criterion

In the experiments, we select Fault accuracy and Overall accuracy to evaluate the proposed method. Fault accuracy represents the diagnostic accuracy only for problem cases, while the Overall accuracy demonstrates the diagnostic accuracy for all cases. 
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E. Results and discussion
The data set is of large scale, imbalance and high complexity. To evaluate the performance of the improved algorithm, we divide the dataset into training subset and testing subset, which are shown in Table I.
Table I. Division of training and testing dataset

	Label
	Training set
	Testing set

	Case Style
	Problem
	Nuisance
	Problem
	Nuisance

	Case Account
	122
	7222
	42
	3096

	Proportion
	7344 (70%)
	3138(30%)


(1) Diagnostics with basic Naïve Bayes classifier
We first use the basic Naïve Bayes classifier to conduct fault diagnosis, in which the nuisance is disregarded. The quantitative results are shown in Table II.
Table II. Diagnostic results with basic Naïve Bayes algorithm
	Label
	Training Set
	Testing Set

	Correct Classification
	107
	19

	Case Capacity
	122
	42

	Accuracy
	87.70%
	45.20%


In actual application, i.e., condition monitoring of space crafts and satellites, these complex system are always operating under normal operation in almost all the time. Thus, the monitoring data must be of high imbalance feature. Considering actual data feature and nuisance comprehensively, the diagnostic results are shown in Table III. 
Table III. Results of training and testing set on overall condition

	Label
	Training Set
	Testing Set

	Case Label
	Problem
	Nuisance
	Problem
	Nuisance

	Case Capacity
	122
	7222
	42
	3096

	Correct Classification
	97
	6056
	10
	2566

	Individual Accuracy
	79.51%
	83.85%
	23.81%
	82.88%

	Overall Accuracy
	83.67%
	81.65%


From Table III, we can see that the performance of Naïve Bayes algorithm considering the nuisance is not satisfied. It indicates that the basic Naïve Bayes algorithm cannot meet the industrial requirements.

(2) Diagnostics with improved method
Then, we conduct the same diagnostic experiments with the proposed method, and the results are shown in Table IV.
Table IV. Diagnostic results with fusion method
	Label
	Training set
	Testing set

	Case Label
	Problem
	Nuisance
	Problem
	Nuisance

	Case Capacity
	122
	7222
	42
	3096

	Correct Classification
	102
	6311
	12
	2691

	Individual Accuracy
	83.61%
	87.38%
	28.57%
	86.92%

	Overall Accuracy
	87.32%
	86.13%


By analyzing the results in above tables, we can see that:
1. The implementation of basic Naïve Bayes algorithm can achieve the faults diagnosis for problems in this dataset, with the overall accuracy above 80%.
2. The combination of the Naïve Bayes and AdaBoost ensemble algorithm can partly overcome data imbalance issue, and the fault accuracy increased nearly 5% as well.
The fusion method can achieve the fault diagnosis for discrete monitoring data in complex systems and adapts better for imbalance in frequency of fault and normal condition. As shown in experimental results, the proposed method achieves incensement of fault diagnostic accuracy without impairment in overall accuracy. 

Compared with basic Naïve Bayes, the fusion method attaches more attention to the “hard” samples, which are difficult to be diagnosed correctly. The weights of such samples, which are usually fault conditions, are fortified. When several weak classifiers are trained, each of which focuses on “hard” samples from the former weak classifier model. Integrating all weak classifiers with different weights can comprehensively consider the feature of monitoring data to achieve proper fault diagnosis for both fault and normal conditions and improve the performance of basic Naïve Bayes algorithm.

V. CONCLUSION AND FUTURE WORK
The contributions of this work can be concluded as below. (1) A data-driven fault diagnosis method based on discrete monitoring data is proposed. (2) A fusion classification method integrates Naïve Bayes classifier and AdaBoost ensemble algorithm to improve the diagnostic performance and overcome data imbalance between fault and normal samples. (3) The proposed diagnostic method is applied on PHM 2013 data challenge dataset and achieves higher fault diagnostic accuracy than basic Naïve Bayes classifier.
In future, more research work should continually focus on the improvement for fault diagnostic accuracy. The proposed method is only suitable for discrete monitoring data. However, in most of complex systems such as satellites and aircrafts, the monitoring data involves multiple types of parameters. Thus, a comprehensive method which can both handle the continuous and discrete parameters is essential for actual industrial applications.
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